{ "cells": [ { "cell_type": "markdown", "id": "f6c8f14c-ff44-47dd-9543-fe717469a1d5", "metadata": {}, "source": [ "# The AutoTherm Wolfram package" ] }, { "cell_type": "markdown", "id": "0881d8ad-4749-4ead-b6f6-bfd439ea747f", "metadata": {}, "source": [ "### Importing the packages" ] }, { "cell_type": "code", "execution_count": 1, "id": "9f121b2b-d428-4fd6-b656-bbefdca8646a", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "FeynArts 3.12 (24 May 2024)\n", "by Hagen Eck, Sepp Kueblbeck, and Thomas Hahn\n", "\n", "FormCalc 9.10 (30 Aug 2022)\n", "by Thomas Hahn\n", "\n", "AutoTherm 0.9\n", "by Killian Bouzoud, Jacopo Ghiglieri and Greg Jackson\n", "Please cite XXXXXX\n", "\n" ] } ], "source": [ "Get[\"~/Nextcloud/AUTOTHERM/FeynArts-3.12/FeynArts.m\"]; \n", "Get[\"~/Nextcloud/AUTOTHERM/FormCalc-9.10/FormCalc.m\"]; \n", "Get[\"~/Nextcloud/AUTOTHERM/FormCalc-9.10/tools/VecSet.m\"];\n", "Get[\"~/Nextcloud/AUTOTHERM/autotherm/analytical/autotherm.wl\"]" ] }, { "cell_type": "markdown", "id": "a6e03a94-46d3-414e-b1ce-8f01ce8fad42", "metadata": {}, "source": [ "### import the MSSM gravitino model" ] }, { "cell_type": "code", "execution_count": 5, "id": "0015d3db-1401-4160-8188-fb57826a808e", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [], "source": [ "ConfigParse[\"~/Nextcloud/AUTOTHERM/autotherm/MyModels/mssm_gravitino/mssm_gravitino.m\"]" ] }, { "cell_type": "markdown", "id": "66d9f988-e87f-4b28-b0c4-62a0c23e073e", "metadata": {}, "source": [ "look at the gluon-gluon to gluon, graviton process" ] }, { "cell_type": "code", "execution_count": 6, "id": "8b6b93f3-a4ad-4649-8964-38fe5cd2c851", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ " 2 2 2 2 2\n", "48 g3 kappa (T + T U + U ) AUThast[{{T, V[3]}, {U, V[3]}}] AUTstatspart[1, 1, 1]\n", "------------------------------------------------------------------------------------\n", " S T U" ] }, "execution_count": 6, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "ggtogG = ComputeMatrixElement[{V[3], V[3]} -> {V[3], T[1]}]" ] }, { "cell_type": "markdown", "id": "93343995-031a-4df2-809d-0542dd79cbba", "metadata": {}, "source": [ "we can drop the auxiliary ``AUTstatpart`` and ``AUThast`` labels" ] }, { "cell_type": "code", "execution_count": 21, "id": "3ee803e8-7f14-44bb-9742-8556296fae36", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ " 2 2 2 2 2\n", "48 (T + T U + U ) \\[Kappa] g\n", " 3\n", "---------------------------------\n", " S T U" ] }, "execution_count": 21, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "ggtogG /. {AUTstatspart[___] -> 1, AUThast[___] -> 1,kappa->\\[Kappa],g3->Subscript[g, 3]}" ] }, { "cell_type": "markdown", "id": "acd328bc-2c7d-49eb-bb59-4025169118a1", "metadata": {}, "source": [ "we can look at any process, not just those with a non-equilibrium particle in the final state. For instance, the well-known gluon gluon to gluon gluon at LO in the SM reads" ] }, { "cell_type": "code", "execution_count": 8, "id": "255e6f96-f3dc-455a-85e0-b69b1c281907", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ " 4 2 2 3\n", "1152 g3 (T + T U + U ) AUThast[{{T, V[3]}, {U, V[3]}}] AUTstatspart[1, 1, 1]\n", "-------------------------------------------------------------------------------\n", " 2 2 2\n", " S T U" ] }, "execution_count": 8, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "ggtogg = ComputeMatrixElement[{V[3], V[3]} -> {V[3], V[3]}]" ] }, { "cell_type": "code", "execution_count": 23, "id": "4045208c-3fb9-48fa-b5fb-2a8ff9d9d56d", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ " S T S U T U 4\n", "1152 (3 - --- - --- - ---) g\n", " 2 2 2 3\n", " U T S" ] }, "execution_count": 23, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "(Expand[(Simplify[\n", " ggtogg/g3^4 /. {AUTstatspart[___] -> 1, \n", " AUThast[___] -> 1,kappa->\\[Kappa],g3->Subscript[g, 3]} /. {T U -> (S^2 - T^2 - U^2)/2}] // \n", " Expand) /. {x_^4 :> (SolveValues[S + T + U == 0, \n", " x][[1]])^4}] /. {x_^2/y_^2 :> \n", " x SolveValues[S + T + U == 0, x][[1]]/y^2} // \n", " Expand) Subscript[g, 3]^4 // Simplify" ] }, { "cell_type": "markdown", "id": "e9fa6c10-d95e-4f6c-993c-51b923da3020", "metadata": {}, "source": [ "this should read $16 g_3^4 d_A C_A^2(3 - s u/t^2-t u/s^2 -t s/u^2)$. Indeed" ] }, { "cell_type": "code", "execution_count": 10, "id": "56933cb3-bccc-4785-adc3-bd6d78e29d4d", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
1152
" ], "text/plain": [ "1152" ] }, "execution_count": 10, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "16 8 9 " ] }, { "cell_type": "markdown", "id": "d98a5a2a-a89b-45bf-b812-164ef7dc173f", "metadata": {}, "source": [ "and" ] }, { "cell_type": "code", "execution_count": 24, "id": "5736bd72-dbc2-4fd7-b488-863d3b247695", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
1
" ], "text/plain": [ "1" ] }, "execution_count": 24, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "ggtogg/(16 g3^4 8 9 (3- S U/T^2- T U/S^2 -S T/U^2)) /. {AUTstatspart[___] -> 1, \n", " AUThast[___] -> 1} // Simplify[#, Assumptions -> S + T + U == 0] &" ] }, { "cell_type": "markdown", "id": "166c4ce0-447d-4cd5-bcf5-b92fbcf2ea81", "metadata": {}, "source": [ "look at the gluino-gluino to gluino, gravitino process" ] }, { "cell_type": "code", "execution_count": 13, "id": "a2366cca-4d82-4c40-b465-9571da5fe7a1", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ " 2 2 3\n", "12 g3 kappa S AUThast[{{T, V[3]}, {U, V[3]}}] AUTstatspart[-1, -1, -1]\n", "-------------------------------------------------------------------------\n", " T U" ] }, "execution_count": 13, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "gtgttogtGt = ComputeMatrixElement[{F[8], F[8]} -> {F[8], F[11]}]" ] }, { "cell_type": "markdown", "id": "a01ec9c9-26af-4ca7-ae22-efe6deb167ac", "metadata": {}, "source": [ "consider all the crossings" ] }, { "cell_type": "code", "execution_count": 25, "id": "9ab8627c-ad63-47ad-a7ee-91de6b1ff9b6", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ " 4 4 4 2 2\n", "12 (S + T + U ) \\[Kappa] g\n", " 3\n", "-------------------------------\n", " S T U" ] }, "execution_count": 25, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "gtgttogtGtall = \n", " ComputeMatrixElement[{F[8], F[8]} -> {F[8], F[11]}] + \n", " ComputeMatrixElement[{F[8], -F[8]} -> {-F[8], F[11]}] + \n", " ComputeMatrixElement[{-F[8], F[8]} -> {-F[8], \n", " F[11]}] /. {AUTstatspart[___] -> 1, AUThast[___] -> 1,kappa->\\[Kappa],g3->Subscript[g, 3]} // \n", " Simplify" ] }, { "cell_type": "code", "execution_count": 27, "id": "121ff4e7-14e7-41e3-8c03-a2d499b72435", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ "1\n", "-\n", "2" ] }, "execution_count": 27, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "gtgttogtGtall/ggtogG /. {AUTstatspart[___] -> 1, AUThast[___] -> 1,kappa->\\[Kappa],g3->Subscript[g, 3]} //\n", " Simplify[#, Assumptions -> S + T + U == 0] &" ] }, { "cell_type": "markdown", "id": "da95318f-9b5c-4442-9a44-644e9a138498", "metadata": {}, "source": [ "the ratio agrees with SUSY expectations. Recall that the graviton production is summed over its two polarisations, whereas the gravitino only considers one helicity state. The equivalent contribution from the \"antiparticle\" helicity state is " ] }, { "cell_type": "code", "execution_count": 28, "id": "3cf621c2-54d8-414b-8c2b-5a5cb9946fc7", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ " 4 4 4 2 2\n", "12 (S + T + U ) \\[Kappa] g\n", " 3\n", "-------------------------------\n", " S T U" ] }, "execution_count": 28, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "gtgttogtGtbarall = \n", " ComputeMatrixElement[{-F[8], -F[8]} -> {-F[8], -F[11]}] + \n", " ComputeMatrixElement[{F[8], -F[8]} -> {F[8], -F[11]}] + \n", " ComputeMatrixElement[{-F[8], \n", " F[8]} -> {F[8], -F[11]}] /. {AUTstatspart[___] -> 1, \n", " AUThast[___] -> 1,kappa->\\[Kappa],g3->Subscript[g, 3]} // Simplify" ] }, { "cell_type": "markdown", "id": "e521bd29-bdcf-47ad-943b-fb027925968a", "metadata": {}, "source": [ "### Compute the thermal masses" ] }, { "cell_type": "markdown", "id": "e73b9d99-a4a2-4839-bc0b-21254c69b8c0", "metadata": {}, "source": [ "We can compute all of them" ] }, { "cell_type": "code", "execution_count": 30, "id": "fcb3f103-254a-4a86-822e-890be9364c0e", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dynamic[Computing the thermal mass for particle <>\n", " \n", " ToString[AutoTherm`Private`part$25871]]\n" ] }, { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ " 2 2 2\n", " g + 3 g g\n", " 1 2 1\n", "{{F[1], -----------}, {F[2], ---}, {F[3], \n", " 8 2\n", " \n", " 2 2 2 2 2 2 2 2 2 2\n", " g + 27 g + 48 g g + 27 g + 48 g g + 27 g + 48 g + 18 h\n", " 1 2 3 1 2 3 1 2 3 t\n", " {---------------------, ---------------------, ------------------------------}}, \n", " 72 72 72\n", " \n", " 2 2 2 2 2 2 2\n", " 2 (g + 3 g ) 2 (g + 3 g ) 2 (g + 3 g ) h\n", " 1 3 1 3 1 3 t\n", " {F[4], {---------------, ---------------, --------------- + ---}}, \n", " 9 9 9 2\n", " \n", " 2 2 2 2 2\n", " g + 12 g 11 g 9 g 9 g\n", " 1 3 1 2 3\n", " {F[5], ------------}, {F[6], ------}, {F[7], -----}, {F[8], -----}, \n", " 18 4 4 4\n", " \n", " 2 2 2 2 2 2 2 2\n", " g + 3 g + 6 h g + 3 g g + 3 g + 6 h\n", " 1 2 t 1 2 1 2 t\n", " {F[9], -------------------}, {F[10], -----------}, {S[1], -------------------}, \n", " 8 8 8\n", " \n", " 2 2 2 2 2\n", " g + 3 g g + 3 g g\n", " 1 2 1 2 1\n", " {S[2], -----------}, {S[3], -----------}, {S[4], ---}, \n", " 8 8 2\n", " \n", " 2 2 2 2 2 2\n", " g + 27 g + 48 g g + 27 g + 48 g\n", " 1 2 3 1 2 3\n", " {S[5], {---------------------, ---------------------, \n", " 72 72\n", " \n", " 2 2 2 2\n", " g + 27 g + 48 g + 18 h\n", " 1 2 3 t\n", " ------------------------------}}, \n", " 72\n", " \n", " 2 2 2 2 2 2 2\n", " 2 (g + 3 g ) 2 (g + 3 g ) 2 (g + 3 g ) h\n", " 1 3 1 3 1 3 t\n", " {S[6], {---------------, ---------------, --------------- + ---}}, \n", " 9 9 9 2\n", " \n", " 2 2 2 2 2\n", " g + 12 g 11 g 9 g 9 g\n", " 1 3 1 2 3\n", " {S[7], ------------}, {V[1], ------}, {V[2], -----}, {V[3], -----}}\n", " 18 2 2 2" ] }, "execution_count": 30, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "AllMasses/.{kappa->\\[Kappa],g3->Subscript[g, 3],g2->Subscript[g, 2],g1->Subscript[g, 1],ht->Subscript[h, t]}" ] }, { "cell_type": "markdown", "id": "e5c171a9-1656-4293-a9f1-ee6602899004", "metadata": {}, "source": [ "Or compute them one by one" ] }, { "cell_type": "code", "execution_count": 29, "id": "99f10911-64ae-422c-b12b-09e22991e89a", "metadata": { "vscode": { "languageId": "wolfram language" } }, "outputs": [ { "data": { "text/html": [ "
\"Output\"
" ], "text/plain": [ " 2 2\n", "g + 3 g\n", " 1 2\n", "-----------\n", " 8" ] }, "execution_count": 29, "metadata": { "text/html": [], "text/plain": [] }, "output_type": "execute_result" } ], "source": [ "ThermalMass[F[1]]/.{kappa->\\[Kappa],g3->Subscript[g, 3],g2->Subscript[g, 2],g1->Subscript[g, 1],ht->Subscript[h, t]}" ] } ], "metadata": { "kernelspec": { "display_name": "Wolfram Language 14", "language": "Wolfram Language", "name": "wolframlanguage14" }, "language_info": { "codemirror_mode": "mathematica", "file_extension": ".m", "mimetype": "application/vnd.wolfram.m", "name": "Wolfram Language", "pygments_lexer": "mathematica", "version": "12.0" } }, "nbformat": 4, "nbformat_minor": 5 }