M$ModelName = "Symmetric phase SM";
M$Information = {
Authors -> {"Killian Bouzoud", "Jacopo Ghiglieri"},
Institutions -> {"SUBATECH, IN2P3","SUBATECH, IN2P3"},
Emails -> {"killian.bouzoud@subatech.in2p3.fr","jacopo.ghiglieri@subatech.in2p3.fr"},
Date -> "14.11.2024",
Version -> "1.1"
}
(****************)
(* Gauge groups *)
(****************)
M$GaugeGroups = {
U1Y == {
Abelian -> True,
CouplingConstant -> g1,
GaugeBoson -> B,
Charge -> Y
},
SU2L == {
Abelian -> False,
CouplingConstant -> g2,
GaugeBoson -> Wi,
StructureConstant -> Eps,
Representations -> {Ta,SU2D}
},
SU3C == {
Abelian ->False,
CouplingConstant -> g3,
GaugeBoson -> G,
StructureConstant -> f,
Representations -> {T,Colour},
DTerm -> dSUN
}
};
(****************)
(* Indices *)
(****************)
IndexRange[Index[SU2W]] = NoUnfold[Range[3]];
IndexRange[Index[SU2D]] = NoUnfold[Range[2]];
IndexRange[Index[Gluon]] = NoUnfold[Range[8]];
IndexRange[Index[Colour]] = NoUnfold[Range[3]];
IndexRange[Index[Generation]] = Range[3];
IndexStyle[SU2W,j];
IndexStyle[SU2D,k];
IndexStyle[Gluon,a];
IndexStyle[Colour,m];
IndexStyle[Generation,f];
(******************)
(* Particles *)
(******************)
M$ClassesDescription = {
V[1] == {
ClassName -> B,
SelfConjugate -> True,
Mass -> 0,
Width -> 0,
PropagatorLabel -> "B",
PropagatorType -> Sine,
PropagatorArrow -> None
},
V[2] == {
ClassName -> Wi,
SelfConjugate -> True,
Indices -> {Index[SU2W]},
Mass -> 0,
Width -> 0,
PropagatorLabel -> "W",
PropagatorType -> Sine,
PropagatorArrow -> None
},
V[3] == {
ClassName -> G,
SelfConjugate -> True,
Indices -> {Index[Gluon]},
Mass -> 0,
Width -> 0,
ParticleName -> "g",
PropagatorLabel -> "g",
PropagatorType -> Cycles,
PropagatorArrow -> None
},
F[1] == {
ClassName -> lL,
Indices -> {Index[SU2D],Index[Generation]},
SelfConjugate -> False,
FlavorIndex -> SU2D,
QuantumNumbers -> {Y -> 1/2},
Mass -> 0,
Width -> 0,
PropagatorLabel -> ComposedChar["l","L"],
PropagatorType -> Straight,
PropagatorArrow -> Forward
},
F[2] == {
ClassName -> eR,
Indices -> {Index[Generation]},
SelfConjugate -> False,
FlavorIndex -> Generation,
QuantumNumbers -> {Y -> 1},
Mass -> 0,
Width -> 0,
PropagatorLabel -> ComposedChar["e","R"],
PropagatorType -> Straight,
PropagatorArrow -> Forward
},
F[3] == {
ClassName -> QL,
Indices -> {Index[SU2D],Index[Generation],Index[Colour]},
SelfConjugate -> False,
FlavorIndex -> SU2D,
QuantumNumbers -> {Y -> -1/6},
Mass -> 0,
Width -> 0,
PropagatorLabel ->ComposedChar["Q","L"],
PropagatorType -> Straight,
PropagatorArrow -> Forward
},
F[4] == {
ClassName -> uR,
Indices -> {Index[Generation],Index[Colour]},
SelfConjugate -> False,
FlavorIndex -> Generation,
QuantumNumbers -> {Y -> -2/3},
Mass -> 0,
Width -> 0,
PropagatorLabel -> ComposedChar["u","R"],
PropagatorType -> Straight,
PropagatorArrow -> Forward
},
F[5] == {
ClassName -> dR,
Indices -> {Index[Generation],Index[Colour]},
SelfConjugate -> False,
FlavorIndex -> Generation,
QuantumNumbers -> {Y -> 1/3},
Mass -> 0,
Width -> 0,
PropagatorLabel -> ComposedChar["d","R"],
PropagatorType -> Straight,
PropagatorArrow -> Forward
},
S[1] == {
ClassName -> Phi,
Indices -> {Index[SU2D]},
SelfConjugate -> False,
FlavorIndex -> SU2D,
QuantumNumbers -> {Y -> -1/2},
Mass -> 0,
Width -> 0,
PropagatorLabel -> "\\Phi",
PropagatorType -> ScalarDash,
PropagatorArrow -> Forward
}
};
(**************)
(* Parameters *)
(**************)
M$Parameters = {
g1 == {
ParameterType -> Internal
},
g2 == {
ParameterType -> Internal
},
g3 == {
ParameterType -> Internal
},
lam == {
ParameterType -> Internal
},
yu == {
ParameterType -> Internal,
Indices -> {Index[Generation],Index[Generation]}
},
ht =={
ParameterType -> Internal,
Description -> "Top Yukawa"
},
yuext == {
ParameterType -> External,
Indices->{Index[Generation],Index[Generation]},
Value ->{yuext[i_,3] :> 0 /; i!=3,
yuext[3,i_] :> 0 /; i!=3,
yuext[i_,j_] :> 0 /; i!=3&&j!=3,
yuext[3,3]->ht}
}
};
(**************)
(* Lagrangian *)
(**************)
LGauge := Block[{mu,nu,ii,aa},
-1/4 FS[B,mu,nu] FS[B,mu,nu]
-1/4 FS[Wi,mu,nu,ii] FS[Wi,mu,nu,ii]
-1/4 FS[G,mu,nu,aa] FS[G,mu,nu,aa] ];
LFermion := Block[{mu},
I*(lLbar.Ga[mu].ProjM.DC[lL,mu]
+eRbar.Ga[mu].ProjP.DC[eR,mu]
+QLbar.Ga[mu].ProjM.DC[QL,mu]
+uRbar.Ga[mu].ProjP.DC[uR,mu]
+dRbar.Ga[mu].ProjP.DC[dR,mu])
];
(* add an explicit multiplication rule for the fundamental generators *)
LHiggs := Expand[Block[{mu,ii,jj},
DC[Phibar[ii],mu] DC[Phi[ii],mu]
- lam (Phibar[ii] Phi[ii]) (Phibar[jj] Phi [jj])] ]/. {Ta[a_, i_, j_] Ta[b_, j_, kk_] :>
Module[ {c},
I/2 Eps[a, b, Index[SU2W, c] ] Ta[Index[SU2W, c], i, kk] +
1/4 IndexDelta[a, b] IndexDelta[i, kk] ]};
LYukawa := Block[{sp,sp1,ii,jj,cc,ff1,ff2,yuk,iii,jjj},
yuk = -yu[ff1,ff2] QLbar[sp,ii,ff1,cc].ProjP[sp,sp1].uR[sp1,ff2,cc] Phibar[jj] Eps[ii,jj];
yuk + HC[yuk]
];
LSM := LGauge + LFermion + LHiggs + LYukawa;