The AutoTherm Wolfram package#
Importing the packages#
[1]:
Get["~/Nextcloud/AUTOTHERM/FeynArts-3.12/FeynArts.m"];
Get["~/Nextcloud/AUTOTHERM/FormCalc-9.10/FormCalc.m"];
Get["~/Nextcloud/AUTOTHERM/FormCalc-9.10/tools/VecSet.m"];
Get["~/Nextcloud/AUTOTHERM/autotherm/analytical/autotherm.wl"]
FeynArts 3.12 (24 May 2024)
by Hagen Eck, Sepp Kueblbeck, and Thomas Hahn
FormCalc 9.10 (30 Aug 2022)
by Thomas Hahn
AutoTherm 0.9
by Killian Bouzoud, Jacopo Ghiglieri and Greg Jackson
Please cite XXXXXX
import the MSSM gravitino model#
[5]:
ConfigParse["~/Nextcloud/AUTOTHERM/autotherm/MyModels/mssm_gravitino/mssm_gravitino.m"]
look at the gluon-gluon to gluon, graviton process
[6]:
ggtogG = ComputeMatrixElement[{V[3], V[3]} -> {V[3], T[1]}]
[6]:
we can drop the auxiliary AUTstatpart and AUThast labels
[21]:
ggtogG /. {AUTstatspart[___] -> 1, AUThast[___] -> 1,kappa->\[Kappa],g3->Subscript[g, 3]}
[21]:
we can look at any process, not just those with a non-equilibrium particle in the final state. For instance, the well-known gluon gluon to gluon gluon at LO in the SM reads
[8]:
ggtogg = ComputeMatrixElement[{V[3], V[3]} -> {V[3], V[3]}]
[8]:
[23]:
(Expand[(Simplify[
ggtogg/g3^4 /. {AUTstatspart[___] -> 1,
AUThast[___] -> 1,kappa->\[Kappa],g3->Subscript[g, 3]} /. {T U -> (S^2 - T^2 - U^2)/2}] //
Expand) /. {x_^4 :> (SolveValues[S + T + U == 0,
x][[1]])^4}] /. {x_^2/y_^2 :>
x SolveValues[S + T + U == 0, x][[1]]/y^2} //
Expand) Subscript[g, 3]^4 // Simplify
[23]:
this should read \(16 g_3^4 d_A C_A^2(3 - s u/t^2-t u/s^2 -t s/u^2)\). Indeed
[10]:
16 8 9
[10]:
1152
and
[24]:
ggtogg/(16 g3^4 8 9 (3- S U/T^2- T U/S^2 -S T/U^2)) /. {AUTstatspart[___] -> 1,
AUThast[___] -> 1} // Simplify[#, Assumptions -> S + T + U == 0] &
[24]:
1
look at the gluino-gluino to gluino, gravitino process
[13]:
gtgttogtGt = ComputeMatrixElement[{F[8], F[8]} -> {F[8], F[11]}]
[13]:
consider all the crossings
[25]:
gtgttogtGtall =
ComputeMatrixElement[{F[8], F[8]} -> {F[8], F[11]}] +
ComputeMatrixElement[{F[8], -F[8]} -> {-F[8], F[11]}] +
ComputeMatrixElement[{-F[8], F[8]} -> {-F[8],
F[11]}] /. {AUTstatspart[___] -> 1, AUThast[___] -> 1,kappa->\[Kappa],g3->Subscript[g, 3]} //
Simplify
[25]:
[27]:
gtgttogtGtall/ggtogG /. {AUTstatspart[___] -> 1, AUThast[___] -> 1,kappa->\[Kappa],g3->Subscript[g, 3]} //
Simplify[#, Assumptions -> S + T + U == 0] &
[27]:
the ratio agrees with SUSY expectations. Recall that the graviton production is summed over its two polarisations, whereas the gravitino only considers one helicity state. The equivalent contribution from the “antiparticle” helicity state is
[28]:
gtgttogtGtbarall =
ComputeMatrixElement[{-F[8], -F[8]} -> {-F[8], -F[11]}] +
ComputeMatrixElement[{F[8], -F[8]} -> {F[8], -F[11]}] +
ComputeMatrixElement[{-F[8],
F[8]} -> {F[8], -F[11]}] /. {AUTstatspart[___] -> 1,
AUThast[___] -> 1,kappa->\[Kappa],g3->Subscript[g, 3]} // Simplify
[28]:
Compute the thermal masses#
We can compute all of them
[30]:
AllMasses/.{kappa->\[Kappa],g3->Subscript[g, 3],g2->Subscript[g, 2],g1->Subscript[g, 1],ht->Subscript[h, t]}
Dynamic[Computing the thermal mass for particle <>
ToString[AutoTherm`Private`part$25871]]
[30]:
Or compute them one by one
[29]:
ThermalMass[F[1]]/.{kappa->\[Kappa],g3->Subscript[g, 3],g2->Subscript[g, 2],g1->Subscript[g, 1],ht->Subscript[h, t]}
[29]: